
Solid State Relays

VS861 Series

VS861210DC

Higher Reliability Than Electromagnetic Relays

FEATURES

- No moving parts to wear or fail
- No contact bounce or arcing contacts
- Reduced EMI
- Longer life than electromechanical relays
- Superior performance where fast response time or high frequency of on/off cycling are required

DESCRIPTION

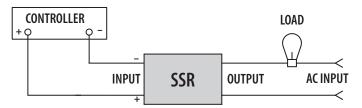
The DIN-Mountable **VS861 Series** Solid State Relay with an internal heat sink is the first complete solid state relay with no moving parts available in a modular package.

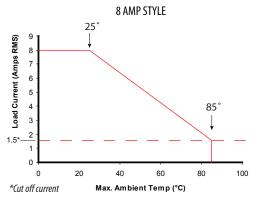
A SSR (solid state relay) can perform many of the same tasks as an EMR (electromechanical relay). The SSR differs in that it contains no moving mechanical parts. It is essentially an electronic device that relies on the electrical, magnetic, and optical properties of semiconductors and electrical components to achieve its isolation and relay switching function.

APPLICATIONS

- Lighting
- Traffic control
- Instrumentation systems and alarm systems
- Industrial automation

SPECIFICATIONS


OUTPU Switching Voltage	T CHARACTERISTICS				
Switching Voltage					
	<i>VS861210DC(AC) & VS861208DC(AC)</i> : 24280VAC, <i>VS861208DD</i> : 3150VDC				
Maximum Zero Turn-on Voltage (Vpk)	VS861210DC(AC) & VS861208DC(AC) : 35V				
Maximum Rate of Rise off State Voltage (dv/dt)	<i>VS861210DC(AC)</i> : 500V/μS, <i>VS861208DC</i> : 475V/μS, <i>VS861208AC</i> : 350V/μS				
Incandescent Lamp Ampere Rating (RMS)					
Motor Load Rating (RMS)	<i>VS861210DC(AC)</i> : 4.5A, <i>VS861208DC(AC)</i> : 3A				
Min. Load Current to Maintain On	<i>VS861210DC(AC)</i> : 50mA, <i>VS861208DC(AC)</i> : 150mA, <i>VS861208DD</i> : 20mA				
Non-Repetitive Surge Current (1 cycle)	VS861210DC(AC): 500A , VS861208DC(AC): 200A, VS861208DD: 35A				
Max. RMS Overload Current (1 sec.)	<i>VS861210DC(AC)</i> & <i>VS861208DC</i> : 24A, <i>VS861208(DD)</i> : 17A				
Max. Off State Leakage Current (RMS)	10mA				
Typical On State Voltage Drop (RMS)	1.25VAC				
Max. On State Voltage Drop (RMS)	<i>VS861210DC(AC) & VS861208DC(AC)</i> : 1.6VAC, <i>VS861208DD</i> : 1.6VDC				
INPUT CHARACTERISTICS					
Must Release Voltage	VS861210DC, VS861208DC, & VS- 861208DD: 1VDC, VS861210AC & VS861208AC: 10VAC				
SP (Nominal) Input Impedance	VS861210DC, VS861208DC, & VS861208DD: Current Regulator; VS861210AC & VS861208AC: 1625kΩ				
Typical Input Current @ 5VDC or 240VAC	<i>VS861210DC</i> : 16mA, <i>VS861210AC,</i> <i>VS861208DC(AC), & VS861208DD</i> : 12mA				
Reverse Polarity Protection	VS861210DC, VS861208DC, & VS861208DD: Yes				
OTHER	CHARACTERISTICS				
Operating Time (Response Time)	VS861210DC & VS861208DC: 8.3msec; VS861210AC & VS861208AC: 40msec; VS861208DD: 5msec				
Release Time	VS861210DC & VS861208DC: 8.3msec; VS861210AC & VS861208AC: 80msec; VS861208DD: 5msec				
Rated Insulation Voltage/ Dielectric Strength	2500VAC				
Operating Temp Range	-30° to +80°C (-22° to 176°F)				
Thermal Resistance (Junction to Case)	VS861210DC(AC): 0.66°C/W, VS861208DC(AC): 2.0°C/W, VS861208DD: 0.5°C/W				
Integral Heat Sink	4.0°C/W				


1

1

WIRING DIAGRAM

AMPERAGE DERATING **FOR TEMPERATURE**

LOAD CONSIDERATIONS

The primary concern when using SSRs is improper heat sinking. The type of load current should be evaluated when considering an SSR as a switching option. SSRs alone are not compatible with high inrush currents, but cautionary measures can be taken in high inrush applications to increase the SSR's versatility, see table at right.

Ø.19″ (5 mm) M 0 0 4.2″ 3.5″ (107mm) (90mm) 1.4″ (36mm) 0 0 찡 0.7" 2.6" MAX (18mm) (65mm) **10 AMP STYLE** 25° 12 Load Current (Amps RMS) 10 8 6 80° 4 2 1.8 0

DIMENSIONAL DRAWING

LOAD TYPE	CAUTIONARY ACTION			
All load types	Verify that the inrush current does not exceed the surge specifications of the SSR.			
Steady-state resistance	Consider thermal management. Assure device temperature will remain in safe operating area.			
DC (inductive)	Place a diode across the load to absorb surges during turnoff.			
Incandescent lamp	Use a zero voltage turn-on type.			
Capacitive	Verify that the rate of current rise capabilities are not exceeded. Zero voltage turn-on is an effective method for limiting this rate.			
Motors and Solenoids	Use a current shunt and oscilloscope to examine the duration of the inrush current. Verify that back EMF does not create an overvoltage situation during turn-off.			
Transformers	Use a zero cross turn-on device; verify that the half cycle surge capability is not exceeded. Rule of thumb: select an SSR with a half cycle current surge rating greater than the maximum applied line voltage divided by the transformer primary resistance.			

ORDERING INFORMATION

0

*Cut off current

20

40

60

Max. Ambient Temp (°C)

80

100

MODEL	Relay	Amperage Rating	Input Voltage	Switching Device	Switching Voltage	Switching Type	UL	CE
VS861210DC		10A	3-32VDC	SCR	24-280VAC	Zero Cross		
VS861210AC		10A	90-280VAC, 80-140VDC	SCR	24-280VAC	Zero Cross		
VS861208DC	SPST, N.O.	8A	3-32VDC	Triac	24-280VAC	Zero Cross		
VS861208AC		8A	90-280VAC, 80-140VDC	Triac	24-280VAC	Zero Cross		
VS861208DD		8A	3.5-32VDC	MOSFET	3-150VDC	DC Switching		

